On the Density of Critical Graphs with No Large Cliques
نویسندگان
چکیده
A graph $G$ is \textit{$k$-critical} if $\chi(G) = k$ and every proper subgraph of $(k - 1)$-colorable, $L$ a list-assignment for $G$, then \textit{$L$-critical} not $L$-colorable but induced is. In 2014, Kostochka Yancey proved lower bound on the average degree an $n$-vertex $k$-critical tending to $k \frac{2}{k 1}$ large $n$ that tight infinitely many values $n$, they asked how their may be improved graphs containing clique. Answering this question, we prove $\varepsilon \leq 2.6\cdot10^{-10}$, $k$ sufficiently $K_{\omega + 1}$-free $L$-critical where $\omega k \log^{10}k$ such $|L(v)| 1$ all $v\in V(G)$, at least $(1 \varepsilon)(k 1) \varepsilon \omega 1$. This result implies some > 0$, satisfying $\omega(G) \mathrm{mad}(G) \log^{10}\mathrm{mad}(G)$ $\omega(G)$ size largest clique in $\mathrm{mad}(G)$ maximum list-chromatic number most $\left\lceil (1 \varepsilon)(\mathrm{mad}(G) \varepsilon\omega(G)\right\rceil$.
منابع مشابه
The typical structure of graphs with no large cliques
In 1987, Kolaitis, Prömel and Rothschild proved that, for every fixed r ∈ N, almost every n-vertex Kr+1-free graph is r-partite. In this paper we extend this result to all functions r = r(n) with r 6 (log n). The proof combines a new (close to sharp) supersaturation version of the Erdős–Simonovits stability theorem, the hypergraph container method, and a counting technique developed by Balogh, ...
متن کاملthe effect of traffic density on the accident externality from driving the case study of tehran
در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...
15 صفحه اول∆-critical Graphs with Small High Vertex Cliques
We prove thatKχ(G) is the only vertex critical graphG with χ(G) ≥ ∆(G) ≥ 6 and ω(H(G)) ≤ ⌊ ∆(G) 2 ⌋ − 2. Here H(G) is the subgraph of G induced on the vertices of degree at least χ(G). Setting ω(H(G)) = 1 proves a conjecture of Kierstead and Kostochka.
متن کاملthe effect of using critical discourse analytical tools on the improvement of the learners level of critical thinking in reading comprehension
?it is of utmost priority for an experienced teacher to train the mind of the students, and enable them to think critically and correctly. the most important question here is that how to develop such a crucial ability? this study examines a new way to the development of critical thinking utilizing critical discourse analytical tools. to attain this goal, two classes of senior english la...
Universal Graphs without Large Cliques
The theory of universal graphs originated from the observation of R. Rado [4,5] that a universal countable graph X exists, i.e., X is countable and isomorphically embeds every countable graph. He also showed that under GCH, there is a universal graph in every infinite cardinal. Since then, several results have been proved about the existence of universal elements in different classes of graphs....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorica
سال: 2023
ISSN: ['0209-9683', '1439-6912']
DOI: https://doi.org/10.1007/s00493-023-00007-w